Radieschen
A framework for a multi-disciplinary Research Data Infrastructure

Goal: to develop a roadmap and to provide recommendations towards a multi-disciplinary Research Data Infrastructure in Germany

Means: survey of existing and new projects, analysis of processes, workflows and infrastructures

Details: come see our poster!

www.forschungsdaten.org
BraINS: Integrating Data Sharing and Data Curation

David Rodríguez González, Dominic Job, David A. Dickie, Susan Shenkin, Malcolm Atkinson, Joanna M. Wardlaw

- Building a normative brain imaging bank using existing data.
- Reusing very valuable data (worth £20m).
- Challenges:
 - Noisy data.
 - Poor provenance information.
 - Heterogeneous schemas.
- Data sharing:
 - De-identification
 - Different levels of access to data.
 - Incentives for sharing data:

http://www.bric.ed.ac.uk/research/BRAINS.asp
Experiments in Data Discovery: adapting library practices
The Archive and Data Management Training Center
Ensuring excellence in the creation, management, and long-term preservation of research data

We offer training and consulting on management and preservation of digital data

Speak to us if...

... you are a researcher or principal investigator in the social sciences interested in good data management

... you want to learn more about data management planning, data sharing and reuse, anonymization and consent

... you want to learn more about preservation strategies and policies, file formats, data security, licensing and intellectual property rights

GESI S loves you

www.gesis.org/en/admtc
@archivetraining
Curating Large Diverse Data Collections

Before

User has to enter complex search string himself to account for different notations

```plaintext
SEARCH FOR pron IN ps OR pn IN pos
OR pronoun IN part_of_speech OR ...
```

After

```
SEARCH FOR pn IN pos
```

automatically translates to

```
SEARCH FOR pron IN ps OR pn IN pos OR pronoun
IN part_of_speech OR ...
```
Versioning in Institutional Repositories
Digital Curation in DSpace 3.0

What do you think: Are the following FACILITATING or IMPEDING digital curation?

- Canonical URL directing to the latest item version
- Linear version histories
- Hierarchical version histories
- Guaranteed availability of every historic state for all metadata and files
- Allow changes on metadata or files without triggering the creation of a new version
- Pre-defined and automated policies to enforce creation of a new version
- Human choice between editing an item or creating a new version

Bram Luyten
@mire.co-founder
bram@atmire.com
Where have all the scientific data gone?

LIS perspective on data at risk
Cheryl A. Thompson, W. Davenport Robertson & Jane Greenberg

- survey of information custodians to understand the data at risk predicament

- Captured information on the data at risk:
 - type, risk level, data sharing practices and future plans for these data

- Results (see poster for details)
DataUp: Enabling Data Stewardship for Researchers

Free & open-source software
Add-in or web app
Features:
• Check for best practices
• Create metadata
• Create a citation
• Archive data

dataup.cdlib.org

Funders: Microsoft Research Connections; Gordon and Betty Moore Foundation
Data Curation Tasks Performed by Data Producers Throughout the Data Life Cycle

How are data producers making their data usable for themselves?

A: Handing their data to a data archivist
B: Hoping for the best
C: Twiddling their thumbs
D: Actively selecting, verifying, storing, and documenting their data
“The University recognises its responsibility to promote high standards of research data management practice, the need for transparency, and the desirability of making research data openly available...”
The Data Management Audit as an Academic Library Service

- Data management – new role for researchers
- Audit of processes and tools
- Develop workflow diagrams
- Offer recommendations
 - Efficiency
 - Redundancy
 - Tools
 - Metadata schema

Christopher Eaker, University of Tennessee
An OGC-based Service Oriented Architecture Approach for a Research-Data Infrastructure

Geocycles Earth System Research Center (~30 research groups).

Survey: Majority of data has a decisive spatio-temporal context.

Goal: to transport data out of the „data reservoirs“ surrounding individual research groups, integrating it, and controlling its dissemination.

Pilot project: EifelGIS, a webtool for the integration of archaeological / geological scientific data.
Encouraging Junior Researchers to Value and Share Data Management Skills

Methods:
- Policy
- Inductions
- Existing programmes
- Doctoral supervisors
- Discipline specific training
- Guidance

Open Exeter
http://ex.ac.uk/bp

IDCC13 14-16 January 2013 Minute Madness
Online training module for RDM

• Part of Research360 JISC MRD project
• Aims:
 • Self-paced online module for PG students
 • Complement existing training and information
• Instructional design process:
 • External e-learning designer to produce module
 • Internal subject matter experts to develop content
Damaro Project

DaMaRO

Data Management Roll-out at Oxford

Research data lifecycle
- idea
- funding bid
- planning
- lit./data review
- data gathering
- analysis & research outputs
- documentation
- repository storage
- curation
- deposit
- discovery
- access and re-use

Tools & Services

- **DMP Online**
- **DataStage**
- **DATABANK** (in development)
- **DATAFINDER** (in development)
- ORDS (Online Research Database Service)
- Departmental data stores
- External data stores
- External data repositories
- **colwiz (& other external research collaboration tools)

Institutional RDM Policy

Training & Support (available, and adding more)

Sustainability (in progress)

Project website: http://damaro.oucs.ox.ac.uk/

IDCC13 14-16 January 2013 Minute Madness
DataONE: Data Observation Network for Earth

Data ONE
Data Observation Network for Earth

Addressing the Earth’s environmental problems requires that we change the ways that we do science; harness the enormity of existing scientific data; develop new methods to combine, analyze, and visualize diverse data resources; and create new, long-lasting cyberinfrastructure. DataONE is a federated data network that improves access to, and preserves data about, life on Earth and the environment that sustains it.

DataONE Supports Science by:
- Engaging the relevant science, library, data, and policy communities;
- Facilitating easy, secure, and persistent storage of data;
- Disseminating integrated and user-friendly tools for data discovery, analysis, visualization, and decision-making.

Data Life Cycle
The eight steps of the Data Life Cycle provide the framework for the development, education and outreach activities of DataONE. Tools are designed to meet user needs in all areas of the DLC and training and outreach activities ensure users have access to the information and resources needed for planning, organizing and sharing their data.

Education and Outreach
A suite of resources and training events build out from the DataONE infrastructure. These resources include a Best Practices Database of expert recommendations for data management; a Primer on Data Management; and a Software Tools Database. Designed as a community project, the DataONE Users Group guides the evolution of DataONE.

Investigator Toolkit (ITK)
The Investigator Toolkit provides a user friendly interface for seamless search and retrieval of data held within the DataONE network. The ITK also enables access to customised tools that are familiar to scientists and that can support them in all aspects of the Data Life Cycle.

Future Development Objectives
- Progressive integration of semantic capabilities to improve discoverability and reuse of data;
- Provenance tracing to better facilitate determination of the derivation of data and improve reproducibility of analyses;
- Integration with high performance computing facilities such as XSEDE to enable seamless transfer of data objects to computational resources, and archive of computational outcomes;
- Addition of notification and annotation services, so researchers may tag and otherwise annotate data sets to help with content reuse;
- Adapting more investigator tools to address all aspects of the data lifecycle;
- Ongoing expansion of capacity through addition of additional Member Nodes.

Member Nodes (MN)
Member Nodes encompass a diverse array of institutions that serve as data centers or repositories including libraries, universities, research networks, and governmental and nongovernmental agencies.

Coordinating Nodes (CN)
Network-wide services enhance interoperability of the Member Nodes and support indexing and replication services.
Submitting BIG data to a DSpace repository

File transfers facilitated by Globus

- Researcher #1: 10 GB of data
- Researcher #2: 500 GB of data
- Researcher #3: 10 TB of data

DSpace Repository, Exeter University

Globus Online

Open Exeter

JDCC13 14-16 January 2013 Minute Madness
Supplemental Files in Electronic Theses and Dissertations: Implications for Policy and Practice - Sarah L. Shreeves (UIUC)

Supplemental File(s) by Discipline

- Physical Sciences: 42%
- Life Sciences: 33%
- Social Sciences: 12%
- Arts and Humanities: 13%

Numbers of Supplemental Files

- 29% - 1 file
- 36% - 2-5 files
- 16% - 6-20 files
- 19% - 21 or more files

One thesis had over **2000** supplemental files (data+code) included in a **zip** file

Types of Supplemental Files

- Data: 41%
- Video of Experiments: 4%
- Product of Research: 12%
- Code: 13%
- Protocols: 14%
- Data+Code: 8%
- Primary Sources: 8%

Formats of Supplemental Files

Developing research support services to raise awareness of data preservation

3 projects, working across subject domains

- **Audience research**
 - common issues + clear messages across projects

- **Reusable training materials**
 - introductory leaflet, self-study course for VLEs, trainer presentations, online FAQ

- **Embedded support services**
Creating a Framework for Applying OAIS to Distributed Digital Preservation

Framework contributors

A Framework for Applying OAIS to DDP would:
1. Provide a set of **concepts** and terminology
2. Describe scenarios for the placement of the components of an **OAIS functional entity** across distributed environments
3. Describe the **roles and responsibilities** at institutions across distributed environments

What do you think? How to learn more?

Eld Zierau, The Royal Library of Denmark, elzi@kb.dk
Katherine Skinner, Educopia Institute, MetaArchive Cooperative, katherine.skinner@metaarchive.org
Matt Schultz, Educopia Institute, MetaArchive Cooperative, matt.schultz@metaarchive.org

IDCC13 14-16 January 2013 Minute Madness
Enhanced publications

Research data in 3TU.Datacentrum linked to publications

Semantic web tool Escape

An illustration with data files in 3TU.Datacentrum and the Escape tool

The case

The tool: semantic web editor

The technology: RDF, OAI-ORE

The escape to retrieve a manageable amount of information. The related digital objects are stored as OAI-ORE, Resource Maps in a Fedora repository and indexed in a triplestore.

Interoperability is achieved by using standards such as FOAF, DCMI TERMS, SKOS, SWAN and OAI-ORE.

Through this interoperability it would be possible to join information from systems like ESCAPE in portals to offer a broader view on relations in scientific communication, similar to what portals like Scientific Commons offer for publication repositories worldwide.

The case

The tool: semantic web editor

The technology: RDF, OAI-ORE

The escape to retrieve a manageable amount of information. The related digital objects are stored as OAI-ORE, Resource Maps in a Fedora repository and indexed in a triplestore.

Interoperability is achieved by using standards such as FOAF, DCMI TERMS, SKOS, SWAN and OAI-ORE.

Through this interoperability it would be possible to join information from systems like ESCAPE in portals to offer a broader view on relations in scientific communication, similar to what portals like Scientific Commons offer for publication repositories worldwide.

The case

The tool: semantic web editor

The technology: RDF, OAI-ORE

The escape to retrieve a manageable amount of information. The related digital objects are stored as OAI-ORE, Resource Maps in a Fedora repository and indexed in a triplestore.

Interoperability is achieved by using standards such as FOAF, DCMI TERMS, SKOS, SWAN and OAI-ORE.

Through this interoperability it would be possible to join information from systems like ESCAPE in portals to offer a broader view on relations in scientific communication, similar to what portals like Scientific Commons offer for publication repositories worldwide.
TOTEM: Trusted Online Technical Environment Metadata

Why ‘TOTEM’?
• Totem poles are monuments created by First Nations of the Pacific Northwest to represent and commemorate ancestry, histories, people, or events, and would be erected to be visible within a community.
• The TOTEM registry is used, analogously, to record the complex hardware and software relationships which apply to digital objects, and to make them visible to the digital preservation community.

MAPPING TOTEM’S DATA MODEL IN RDF
• Univ. Cologne have mapped TOTEM metadata into OWL/RDF (cf Planets). This can be easily queried via SPARQL etc.

THE TOTEM REGISTRY
• The conceptual models form the basis for the TOTEM registry spec.
• 25 entities have been modeled (>130 elements plus relationships in a fully normalized structure.)
• 3 technical environments are currently supported: PCx86, CBM 64, Games Consoles
• Instantiated as a MySQL database with API, plus a PHP-based browsing system.

TOTEM AND PREMIS
• PREMIS Env. WG has developed use cases to support new ‘Environment’ Entity.
• The emulation use case makes varied and frequent calls on the TOTEM registry within the PREMIS description.

TOTEM AND EMULATION FRAMEWORKS
• The KEEP EF uses TOTEM to locate compatible versions of: SW and libs; OS, and HW; to form an emulation pathway.
• In bwFLA, the TOTEM data model is used as a base for a temporary bwFLA database with additional new entities

WHERE NEXT FOR TOTEM?
• Collaboration Nat. Libs of NZ & Aust, and NARA
• Incorporate digital art, 3D objects and other complex digital material.
Practitioners need better characterisation tools

80 practitioners
libraries, archives and museums
60 different organisations
11 nationalities

120 issues

5 key themes

SafeArchive
An auditing tool for policy-driven distributed replication

safearchive.org
Auditing Distributed Digital Preservation Networks
Supporting Data Management Plans: Guides for Grant Writers and Reviewers

David Fearon, Betsy Gunia, Tim DiLauro JHU Data Management Services, Sheridan Libraries
Johns Hopkins University datamanagement@jhu.edu http://dmp.data.jhu.edu

Data Management Plans (DMPs) required for grants need guidelines for proposal writers AND proposal reviewers. We developed...

Data Products

<table>
<thead>
<tr>
<th>Data Product</th>
<th>Data Source</th>
<th>Format</th>
<th>Estimated Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data and Metadata Standards (Sample of questions)
1. Do the listed data products use standards for formats or metadata, and why are you using them?
2. What details (metadata) are necessary for others to use your data?
3. How will metadata be generated?

Data Storing and Long-Term Preservation
8. How and where will data be backed up and who is responsible for administering data storage?
9. What data will be preserved after the project?

Data Sharing
19. Which data will be shared? Which data will be publically accessible?
20. Who is expected to use the shared data? (Continues…)

Questionnaire for DMP Preparation & Consulting

DMP Worksheet for Grant Proposal Reviewers

Research product | Source | Format | Size | Preserved (how?) | Shared (how?) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>processed [fMRI]</td>
<td>MRI scanner</td>
<td>rec</td>
<td>50GB</td>
<td>PI server</td>
<td>JHU Data Archive</td>
</tr>
<tr>
<td>survey data</td>
<td>Qualtrics</td>
<td>.xlsx</td>
<td>N=25</td>
<td>PI</td>
<td>By req</td>
</tr>
<tr>
<td>filter algorithm code</td>
<td>Python</td>
<td>JHU DA</td>
<td>NITRC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data sharing policy: i.e.
☐ Gives conditions for re-use
☐Metadata or supplementary files

Data sharing policy: i.e.
☐Gives conditions for re-use
☐Metadata or supplementary files

Data and Metadata Standards (Sample of questions)
1. Do the listed data products use standards for formats or metadata, and why are you using them?
2. What details (metadata) are necessary for others to use your data?
3. How will metadata be generated?

Data Storing and Long-Term Preservation
8. How and where will data be backed up and who is responsible for administering data storage?
9. What data will be preserved after the project?

Data Sharing
19. Which data will be shared? Which data will be publically accessible?
20. Who is expected to use the shared data? (Continues…)

Services of archive (if specified) / Archive type
☐ PI’s Institutional repository
☐ Data integrity checking
☐ Public access to data files

Data management during project:
☒ Storage: has a backup plan
☒ Location & media used:
☒ 2+ copies with 1 off-site
☒ Specifies who is responsible
☒ Data security/ access controls
☒ Has conventions for naming

Data retention post project:
☒ Services of archive
☒ Version control
☒ Collaboration coordination
☒ Gives reasons for preserving data
☒ Using an archive or repository?
The Importance Of Experiential Learning In Educating Effective Data Curators And Information Professionals

Kayla Siddell (University of Tennessee, Knoxville)

• The volume of data being created today continues to grow in the field of e-science and interdisciplinary fields of research.

• There is also a growing need for experienced individuals to curate and maintain this data.

• There is a shortage of professional to fill these positions.

• In order to better prepare information scientists in the field of data curation, there is a growing need for comprehensive programs to educate future data curators.

My poster proposes:

1) Theoretical foundation and application classes
2) Hands-on learning experiences
3) Reflective learning exercises
4) Research experiences
What would you do if you lost your research data tomorrow?

Take the research data health check... and find help to secure, share and exploit your valuable research.

Chances are you could use some helpful pointers in all of these!

Create
- Have you...
 - fully understood your research funders’ data management requirements?
 - written a data management plan?
 - gained ethics approval/consent?
 - protected your intellectual property?

Organise
- Are your research files and data...
 - clearly described, in terms of content (using standard metadata)?
 - clearly labelled with versions and dates?
 - logically structured and named?
 - future-proofed against broken links, using persistent identifiers?

Keep
- Do you know...
 - how to restrict access to your research data to the right people?
 - which data to keep and which data to discard?
 - how securely your data is stored?
 - how your data is backed-up?

Find & Share
- Do you know how to...
 - find existing information resources related to your research?
 - share data with your collaborators securely and effectively?
 - deposit your research data and outputs in an open repository?
 - publish your research, and get it cited as well?

To find information, support, advice and training, as well as links to external resources, go to www.le.ac.uk/researchdata or email: researchdata@le.ac.uk

IDCC13 14-16 January 2013 Minute Madness
Levels of Services and Curation for High-Functioning Data

G. Sayeed Choudhury, Carole L. Palmer, Karen S. Baker, Timothy DiLauro

Meaningful conversation requires shared vocabulary

The Stack Model makes evident

- Categories of data services
- Connections and dependencies among levels of services
- Ramifications of repository choices made by researchers
Archaeology Data Service Impact Study

- 18 month project (to July 2013)
- Mixed approach:
 - Qualitative
 - Economic (quantitative)
 - User and Depositor Surveys
- See project information leaflet for provisional results
- Methods and results change perceptions of stakeholders

Archaeology Data Service Impact Study

This JISC funded study is assessing and quantifying the value and impact of ADS data collections. It explores different ADS stakeholder perceptions of value and costs including those of users and depositors. A range of economic approaches draw on data gathered through online surveys and user and depositor statistics. This supplements and extends other non-economic perceptions of value. Together they provide a powerful combination of value propositions that are being disseminated by the ADS and its stakeholders.

For more information see: http://archaeologydataservice.ac.uk/research/impact

My archaeological research time would be trebled if I didn’t have access to ADS.
- User survey respondent

Returns over 30 years?
Increases in returns on investment in data and related infrastructure arising from additional use facilitated by ADS

£1 cost may provide up to £8.30 return
- User survey respondent

I see its establishment and existence as a major advance in data management and resourcing. It fulfills a fundamental structural need in information storage and retrieval and a service to a wide sector of users.
- Depositor survey respondent

If we didn’t have the ADS we would have to invent it
- Interviewee

ADS has been a lifeline for my research. Having access to the quantity and quality of data, along with access to grey literature has saved me hours, if not years of work.
- Depositor survey respondent

... absolutely critical for professional research and consultancy underpinning Impact Assessments and other work in support of industry and development.
- User survey respondent
Research Support in Academic Libraries: The Datametrics Agenda

• Online survey of research data management and bibliometric support in Australia, NZ, UK and Ireland
 • current/planned, service constraints, staff development
 • significant findings on service partners, service audiences, education and training needs, implications for the future

• Institutional repositories as agent of convergence
 • examples of bringing together bibliometric work and RDM

• Potential for strategic role in research management
 • providing support for the scholarly research enterprise: advice on dataset citation, help with dataset publishing, supply of datametric profiles for grants/faculty evaluations
The CLARIN-NL Data Curation Service

- The stairway to data heaven
- Data curation by DCS
- Goal: persistent access interoperability of metadata
 - Identification candidate resources
 - Data conversion
 - Metadata profile & conversion
 - PIDs
- All in close contact with researchers
imeji – Publish your media data

Various research areas

Free metadata definition

Generic features & design

Standards support

imeji community

5 active partners
Max Planck Digital Library
Humboldt University Berlin
Freie Universität Berlin
National Institute Materials Science Japan
Leuphana University Lüneburg

imeji.org
Documentation
Demo server

Github
github.com/imeji-community/imeji

Mailing lists
imeji-community@gwdg.de
imeji-support@gwdg.de

Twitter
twitter.com/imeji_org

IDCC13 14-16 January 2013 Minute Madness
Building a bridge Together
Supporting data curation through the front office / back office model

First Dutch use case
University Libraries Leiden / 3TU.Datacentrum & DANS

Benefits all
+ more researchers involved
+ more knowledge
+ more data available

A solid infrastructure for sustained availability of research data
Reformatting, Appraising and Selecting Content Extracted from Obsolete Removable Digital Media

Background
Social Science data produced by Vernon Burton –
- data used to produce Pulitzer prize nominated “In My Father's House Are Many Mansions…”

Multi-Level Work

Extracting Data from the Media
Many obsolete media types!

Making Sense of the Data Extracted
Many files extracted!
Challenges include identifying best version of data to retain and identifying files that are within scope
- defining scope of the project
- nearly 1200 files without file extensions or easily identified

Collaborative Effort
Data stewards and technologists worked with Vernon and his project managers to attempt to recreate the history of this data and identify the best representative data; a work in progress

Tracy Popp, Digital Preservation Coordinator, University of Illinois Urbana-Champaign: tpopp2@illinois.edu
Sarah Shreeves, Associate Professor, IDEALS Coordinator, University of Illinois Urbana-Champaign: shreeves@illinois.edu
Jared Lyle, Director of Curation Services, ICPSR, University of Michigan: lyle@umich.edu
Well defined Curation of scientific data using predefined Controlled Vocabularies from the field.

Generates vanilla Excel spreadsheets familiar to scientists (no plugins, VB script or network required, works with Open Office).

Produces RDF graph for future comparisons and querying.

Flexible and independent of any discipline.

stuart.owen@manchester.ac.uk
http://rightfield.org.uk
The Tail & The Telling
Distribution of NSF grant funding FY 2009-11

Zipf's Law

\[f(k; s, N) = \frac{1/k^s}{\sum_{i=1}^{N} (1/i^s)} \]

Pareto's Distribution

\[P(x) = \frac{\alpha b^\alpha}{x^{\alpha+1}} \]

2009
2010
2011
Aim of DATAREPORTER

- Interface with Research Information System (CRIS)
- Reporting to funding agencies (CERIF)
- Sharing data and presentation lists
- Monitoring re-use of data held in internal systems (for impact and compliance with funding organizations)

DATAREPORTER has three components:

- **Web Portal:** Web Interface for Admin
 - Web 2.0/Ajax version (JEE6, JSF, Tomcat)
 - Non-Ajax version (Spring MVC, JSP Tomcat)
- **Applications:** has three applications
 - Indexing component for metadata (Lucene-Solr)
 - Piwik client to generate statistical reports (http)
 - Java client to Databank (RESTful)
- **RESTful interface:** for machine access
Application of the Data Documentation Initiative: Consent Forms for Record Linkage in Longitudinal Studies

McMahon¹, Christiana; Dezateux¹, Carol; Kehoe², Dennis; Alexandrakis¹, Stelios; Castillo¹, Tito
¹ MRC Centre of Epidemiology for Child Health, University College London
² AIMES Grid Services

Problem
- Challenging development process of models to gain enduring consent due to limited access to standardised, pre-existing documents

Proposed Solution
- The Data Documentation Initiative-Lifecycle (DDI-L) metadata standard
- Apply DDI-L to standardise consent forms for inclusion in a DDI compliant catalogue for longitudinal study consent forms for record linkage

Initial findings
- ALSPAC consent form has been successfully standardised
- DDI promotes data discovery/sharing and increases study design documentation availability
Migration from Information Science Data Curation Student to Data Curation Professional
Erica Johns (The University of Tennessee, Knoxville)

• **The Art of Applying an Education to Real World Scenarios**

• **Reconciling the Ideal with the Possible**

• **Learning to Mediate between Data Provider and Data Delivery System**
Transferring the TR32DB Data Management Approach to another Interdisciplinary Research Project

Constanze Curdt & Dirk Hoffmeister, University of Cologne

“Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling & Data Assimilation”
www.tr32db.uni-koeln.de

“Resilience, Collapse and Reorganisation in Social-Ecological Systems of East- and South Africa's Savannahs”
www.fg1501db.uni-koeln.de

Multi-level Metadata Framework

IDCC13 14-16 January 2013 Minute Madness
Working collaboratively with PhD and Early Career Researchers: agents for change

Collaboration

Integration

Multidisciplinary

3D

2D

IDCC13 14-16 January 2013 Minute Madness
The SEAD DataNet Prototype

- NSF Funded DataNet Project #OCI0940824
- SEAD goal is to contribute infrastructure to the NSF DataNet vision that supports data
 - Access
 - Sharing
 - Reuse
 - Preservation
- Direct work with data at the NSF STC NCED (National Center for Earth-Surface Dynamics)

Follow us on Twitter @SEADdatanet

http://www.sead-data.net
Hunger for Automation / Yvonne Friese
Building a Data Preservation Infrastructure to Support OAIS Conformant Archives

Authors
S. Crompton, A. Shaon, D. Giaretta, B. Matthews, STFC, APA
H. Brocks, InConTec GmbH, F. Engel, FTK
U. D. Giammatteo, ACS
C. Tona, F. Marelli, ESA

Services and toolkits
ES Data Preservation Infrastructure
Standards and Models
Sustainability Plan
Use cases and requirements
SW and Documentation

IDCC13 14-16 January 2013 Minute Madness