Data Sharing in a Complex Computational Study: Easier Said than Done!
Qian Zhang1, 2, Heidi Imker2, Bertram Ludäscher1
1 School of Information Sciences (iSchool), University of Illinois at Urbana-Champaign
2 Research Data Service, University Library, University of Illinois at Urbana-Champaign

INTRODUCTION
This work is a follow-up of the IDCC 2016 data paper “Using a computational study of hydrodynamics in the Wax Lake delta to examine data sharing principles” [1]. In this poster, we will explain the practical considerations and activities that were performed throughout data sharing, from preparing to finally publishing the datasets. Specifically, we will describe our efforts to:

- explore and evaluate data repositories;
- investigate data use policy from both external and internal sources;
- decide on granularity of deposit and the associated publication timelines;
- and prepare documentation.

With this example as a use case, we show that data sharing of a complicated computational study for research reproducibility/replication in practice is not as straightforward as stated in “principle”, and requires flexible examination and additional care in practice.

Background
Figure 1 describes a complex dataset used to study the circulation and wind-driven flows in the Wax Lake Delta, Louisiana, USA under winter storm conditions. The whole package bundles a large dataset (approximately 74 GB), which includes the numerical model, software and scripts for data analysis and visualization, as well as detailed documentation. The raw data came from multiple external sources (government agencies, community repositories, and deployed field instruments and surveys, etc.), leading to very large datasets with complex data structures. After integrating multiple datasets from diverse data formats from different sources, new data products are obtained which are then used with the numerical model. With a complex algorithm of computation, the model generates a structured output dataset, which is, after post-data analysis, presented as informative scientific figures and tables that allow interpretations and conclusions contributing to the science of coastal physical oceanography.

Data Sharing Motivation
The data can be reused to study reproducibility or as preliminary investigation to explore a new topic. With thorough documentation and well-organized data, both the input and output dataset are ready for sharing in a domain repository or an institutional repository. Furthermore, the data organization and documentation also serves as a guideline for future research data management and the development of workflow protocols. Here we will describe the dataset created by this Wax Lake Delta hydrodynamics study, how sharing the dataset publicly could enable validation of the current study and extension by new studies, and the challenges that arise prior to sharing the dataset.

RESULTS & CONCLUSION
The granularity of deposit is based not only on the computational infrastructure as a whole but on a mixture of licences applied to different datasets, as well as taking the ease of data access and later reuse into consideration. As a result, our sharing solution is to:

- Option 3:
 - share and publish all the datasets in an institutional data repository – Illinois Data Bank (https://idries.illinois.edu);
 - divide the whole data package of this project is into 7 separate dataset deposits;
 - with no publication delay for 6 [3-8] of the 7 deposits;
 - and a last deposit with a one year embargo [9] which will make the metadata publicly available but restrict the data files from access until the peer-reviewed journal paper gets published.

Those implementing RDM services at University of Illinois at Urbana-Champaign are working to adapt to similar situations that require flexibility. For example, the data sharing steps introduced in this poster are in good accordance with the Data Management Workshop Series 3: Preparing for Data Sharing [2] provided by the Research Data Service on our campus.

ACKNOWLEDGEMENTS
Special thanks to my PhD supervisor Dr. Chunyan Li at the Louisiana State University, the Data Curation Specialist Elizabeth Wicks and the Senior Information Design Specialist Dena Strong at the Research Data Service as well as the Prairie Research Institute Librarian Susan Braxton, for valuable suggestions during the dataset consultation.

REFERENCES
[1] Qian Zhang, Chunyan Li, Heidi Imker, Bertram Ludäscher, and Megan Senseny. Using a computational study of hydrodynamics in the Wax Lake Delta to examine data sharing principles. IDCC 2016 Data Papers.