Looking Inward: Self Assessment
Last year...

Where’s the adoption? Shifting the Focus of Data Publishing in 2018

By Daniella Lowenberg

Institutions build or buy general data repositories (a.k.a. data IRs, non-domain data repositories, campus data solutions)
What we learned

- Tools are not researcher centric
- Focus on tools has distracted community from our adoption efforts
- Researchers do not think at the institutional level

We have to meet researchers where they are at within their workflows
Evaluating Our Success

❌ # of Deposits

❌ Awareness in the researcher community

❌ Integration into workflows

❌ Simplified story of value proposition
Meanwhile....

1. Commercialization of this space continues

2. Research data services/investments are unaffordable with library budgets

3. Researchers have continued to deposit where publishers refer them

4. Our focus, rightly so, has been on community infrastructure for articles
Community Infrastructure
Principles for Open Scholarly Infrastructures

Governance

Sustainability

Insurance

Supporter Community Values

6. Respect multiple solutions
7. Stick to your scope
8. Leverage communal wisdom to move quickly
9. Encourage healthy skepticism
10. Collaborate and be stronger together

Full book available: supporters.guide - @supportersguide
Effective support to the research community does not always mean building new or more tools
Looking Outward: Community Success
Dryad

- Researcher supported and adopted
- Curation for FAIR data & compliance on every dataset
- Embedded in researchers workflows
- Open source & non-profit
Dryad: leader in open data publishing

90,000 researchers
24,500 data submissions
2100 international institutions
700+ academic journals represented
Curation checks on every submission
PUBLIC RELEASE: 30-MAY-2018

Advancing data publishing: California Digital Library & Dryad announce partnership

CALIFORNIA DIGITAL LIBRARY (UNIVERSITY OF CALIFORNIA, OFFICE OF THE PRESIDENT)

OAKLAND/May 30, 2018 - University of California's California Digital Library (CDL) and Dryad Digital Repository are formally partnering to address researcher needs and lead an open, community-supported initiative in research data curation and publishing. This partnership is aimed at driving adoption of curated, accessible data publishing in the research community and will leverage the capabilities of both institutions and publishers to better align data publishing within researcher workflows.
We Are Launching a New Dryad Service!

★ New product development team

★ Migrating classic Dryad onto open-source, nimble CDL technology

★ Transparent reporting and curation with administrative layer

★ Enhanced submission features: publisher integrations
We are launching a new community model

- Dryad is building an **institutional membership** community
- Dryad will be supporting a new set of institutional features
- Institutions can support curated research data publishing where researchers are already depositing
Our Values
We are researcher centered
We are adoption focused
Call to Action
We are an **institutional community** who support data curation, data publishing, and data preservation adoption. We should effectively **band together** and support **community-owned** research data infrastructure!
It is **not** about technology. It is about meeting researchers where they are at and building **global, sustainable, centralized** approaches to achieve adoption.
Values translated to features
New Dryad Platform

- Leverages a Core Trust Seal Certified Preservation Repository
- Technology is standards-based:
 - SWORD, OAI-PMH, Schema.org
 - DataCite schema, ORCiD login/co-author ORCiDs, Funder Registry, Versioning
- Large datasets accepted via cloud manifest
- Submission and Download APIs
- Administration and curation layer
- Standardized data usage and citation metrics (Make Data Count)
Dryad Curation

- Metadata and file checking on every submission
- Team of expert curation staff
- Plugging into institutional data curators
- Modified checks and policies enforced for publishers
Seamless Deposits
Publisher Integrations

- Deposit of data at same time as article
- Researcher never has to leave article submission system
- Privacy during peer review
Transparency
& Reporting
Admin Dashboard

At a glance
- 38,469 Users
- 87 Datasets

Activity in the last 7 days
- 0 users added
- 0 datasets added
- 6 datasets submitted

Datasets

<table>
<thead>
<tr>
<th>Title</th>
<th>Status</th>
<th>Author</th>
<th>DOI</th>
<th>Last Modified</th>
<th>Last modified by</th>
<th>Size</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data from: Demographic inferences after a range expansion can be biased: the test case of the blacktip reef shark (Carcharhinus melanopterus)</td>
<td>Unsubmitted</td>
<td>Daisie Huang</td>
<td>10.5061/dryad.553cm8g</td>
<td>12/04/2018 09:47:24</td>
<td></td>
<td></td>
<td>My last modified</td>
</tr>
<tr>
<td>Data from: Distinct activity-gated pathways mediate attraction and aversion to CO2 in Drosophila</td>
<td>Published</td>
<td>Daisie Huang</td>
<td>10.5061/dryad.2s8422f</td>
<td>12/03/2018 14:39:58</td>
<td></td>
<td></td>
<td>My last modified</td>
</tr>
</tbody>
</table>
Activity Log for Data from: Post-Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes

doi:10.5061/dryad.9bz5m41

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Status</th>
<th>Action taken by</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/20/2018</td>
<td>Curation</td>
<td></td>
<td>Approved by ApproveRejectReviewItem based on metadata for RSPB-2018-2010 on 2018-11-21T09:20:02Z (GMT) article title was updated from "Data from: Post-Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes".</td>
</tr>
<tr>
<td>11/20/2018</td>
<td>Published</td>
<td></td>
<td>Made available in DSpace on 2018-11-21T21:27:12Z (GMT). No. of bitstreams: 0</td>
</tr>
<tr>
<td>12/03/2018</td>
<td>Unchanged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keywords
Discoverability & Usability
Data from: Neurospora and the dead-end hypothesis: genomic consequences of selfing in the model genus.

Gioti, Anastasia
Stajich, Jason E.
Johannesson, Hanna
Publication date: October 24, 2018
Publisher: Dryad
https://doi.org/10.5061/dryad.4n9b4

Citation
Gioti, Anastasia; Stajich, Jason E.; Johannesson, Hanna (2018), Data from: Neurospora and the dead-end hypothesis: genomic consequences of selfing in the model genus., Dryad Dash, Dataset, https://doi.org/10.5061/dryad.4n9b4

Metrics
0 views
0 downloads
1 citations

Keywords
Data from: Neurospora and the dead-end hypothesis: genomic consequences of selfing in the model genus.

Abstract

It is becoming increasingly evident that adoption of different reproductive strategies, such as sexual selfing and asexuality, greatly impacts genome evolution. In this study, we test theoretical predictions on genomic maladaptation of selfing lineages using empirical data from the model fungus Neurospora. We sequenced the genomes of four species representing distinct transitions to selfing within the history of the genus, as well as the transcriptome of one of these, and compared with available data from three outcrossing species. Our results provide evidence for a relaxation of purifying selection in protein-coding genes and for a reduced efficiency of transposable element silencing by Repeat...
Citation
Gioti, Anastasia; Stajich, Jason E.; Johannesson, Hanna (2018). Data from: Neurospora and the dead-end hypothesis: genomic consequences of selfing in the model genus., Dryad Dash, Dataset, https://doi.org/10.5061/dryad.4n9b4

Abstract
It is becoming increasingly evident that adoption of different reproductive strategies, such as sexual selfing and asexuality, greatly impacts genome evolution. In this study, we test theoretical predictions on genomic maladaptation of selfing lineages using empirical data from the model fungus Neurospora. We sequenced the genomes of four species representing distinct transitions to selfing within the history of the genus, as well as the transcriptome of one of these, and compared with available data from three outcrossing species. Our results provide evidence for a relaxation of purifying selection in protein-coding genes and for a reduced efficiency of transposable element silencing by Repeat Induced Point mutation. A reduction in adaptive evolution was also identified in the form of reduced codon usage bias in highly expressed genes of selfing Neurospora, but this result may be confounded by mutational bias. Potentially counteracting these negative effects, the nucleotide substitution rate and the spread of transposons is reduced in selfing species. We suggest that differences in substitution rate relate to the absence of the asexual pathway producing conidia in selfing Neurospora. Our results support the dead-end theory and show that Neurospora genomes bear signatures of both sexual and asexual reproductive mode.

References
This dataset is cited by https://doi.org/10.1111/evo.12206

License
This work is licensed under a CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license.
Compliance
Compliance

● FAIR Data: Curation

● Funder Requirements:
 ○ CoreTrustSeal, FAIR Data, Preservation

● Publisher Policies:
 ○ Private during peer review, published alongside article, citations

● Institutional Values: [Your Input Here!]
What sets Dryad apart?

- **Focus:** ease of deposit and user centered
- **Goal:** drive adoption of *curated, compliant,* research data publishing
- **Features:** innovations to uphold our goals & values